

Accurate time. Worldwide.

The Revolution Evolution of the IEEE 1588 Standard

Doug Arnold
Meinberg USA

Agenda

- Backward compatibility
- New Optional features
 - Modular transparent clock
 - Profile Isolation
 - Interdomain interactions
 - High accuracy features
 - Security
 - Monitoring

Backward Compatibility

“The working group shall ensure that the resulting draft has the highest degree of backward compatibility possible with the previous edition of IEEE 1588...”

--- From the Bylaws of the IEEE 1588 Working Group

What Backward compatibility means

- New edition device will not break 2008 edition network
- New features are optional
- Old features work as before

Year	Version number	Backward compatible
2002	1	N/A
2008	2	No
2018	2.1	Yes, with v2

PTP Message Common Header

Table 18—Common message header

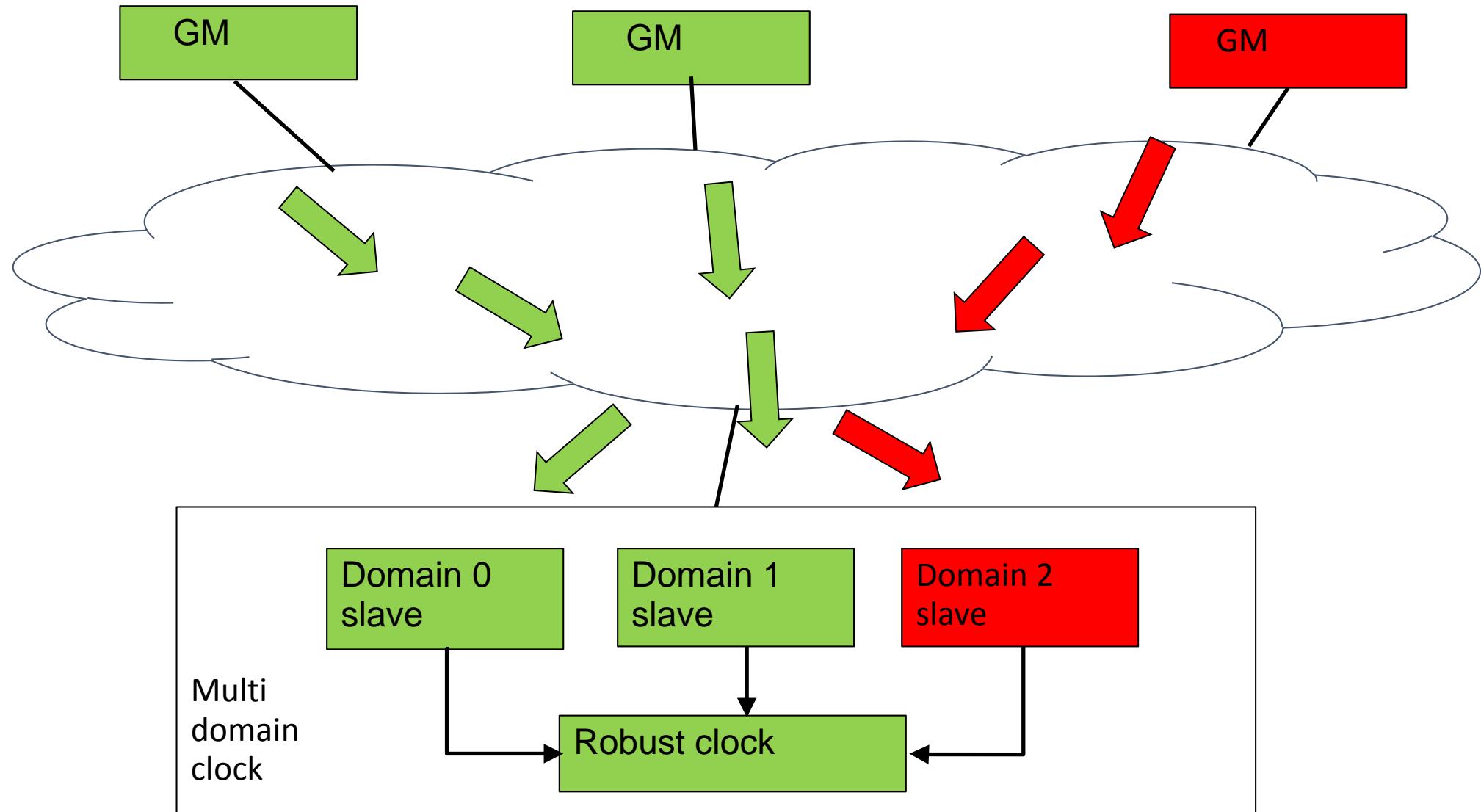
Bits								Octets	Offset
7	6	5	4	3	2	1	0		
transportSpecific				messageType				1	0
reserved				versionPTP				1	1
messageLength					2		2		
domainNumber					1		4		
reserved					1		5		
flagField					2		6		
correctionField					8		8		
reserved					4		16		
sourcePortIdentity					10		20		
sequenceId					2		30		
controlField					1		32		
logMessageInterval					1		33		

2008 edition

Table 26—Common PTP message header

Bits								Octets	Offset
7	6	5	4	3	2	1	0		
majorSdId				messageType				1	0
minorVersionPTP				versionPTP				1	1
messageLength								2	2
domainNumber								1	4
minorSdId								1	5
flagField								2	6
correctionField								8	8
messageTypeSpecific								4	16
sourcePortIdentity								10	20
sequenceId								2	30
reserved								1	32
logMessageInterval								1	33

New edition


- Modular transparent clocks
 - Blade architecture switches/routers
 - SFP modules convert ordinary switches or routers to TCs
- Egress TC ports can update either correction field when Follow_Up present
- Both ingress or egress TC ports can change stepness
 - Create Follow_Up to accompany Sync
 - Combine correction fields in Sync, and drop Follow_Up (**New!**)
- twoStepFlag indicates message semantics only
 - TRUE means Follow_Up coming
 - FALSE means no Follow_Up
 - Regardless of TC port properties

Profile Isolation

- Sdold = Standardization development organization identity
 - 12 bits in common message header
 - Given out by IEEE Registration Authority
 - Any legitimate standards group could get one
 - 0x00 indicates standard, non-isolated PTP
 - 0x100 indicates IEEE 802
 - 0xFFD, 0xFFE are for experimental use
 - ITU, IEC, SMPTE, IETF, etc.. could each get one
 - Meinberg, University of Illinois, etc.. could not
- Domain
 - Domain 4, Sdold = 0x300, is a different domain than Domain 4, Sdold = 0x301
 - Profile can dictate how the domain numbers associated with that organizations SdOID are used
 - Domain 0-15 for profile 1, domain 6-31 for profile 2, etc.

Interactions among domains

Interactions among domains

- Independent domains fed from a single timing source
- Multipath PTP
- Time transfer between domains via non PTP mechanism
 - IRIG-B, 1PPS, Backplane
 - Interdomain timing metadata adapter
 - Timing transfers but not protocol (Each domain has own BMCA)
- Common Mean Link Delay service (**new!**)
 - Peer delay networks with multiple domains
 - Link delay usually domain independent
 - Measure once use measurement in all domains
 - Especially useful for nodes with many ports

High Accuracy PTP

MEINBERG

- Based on work at CERN
 - White Rabbit extensions to PTP
 - Lead scientist Maciej Lipinski
 - Achieved sub-ns phase synchronization
- Manually configured port states
 - All ports either configured or BMCA, no mixing
- Layer 1 Syntonization
- Asymmetry calibration

High Accuracy PTP

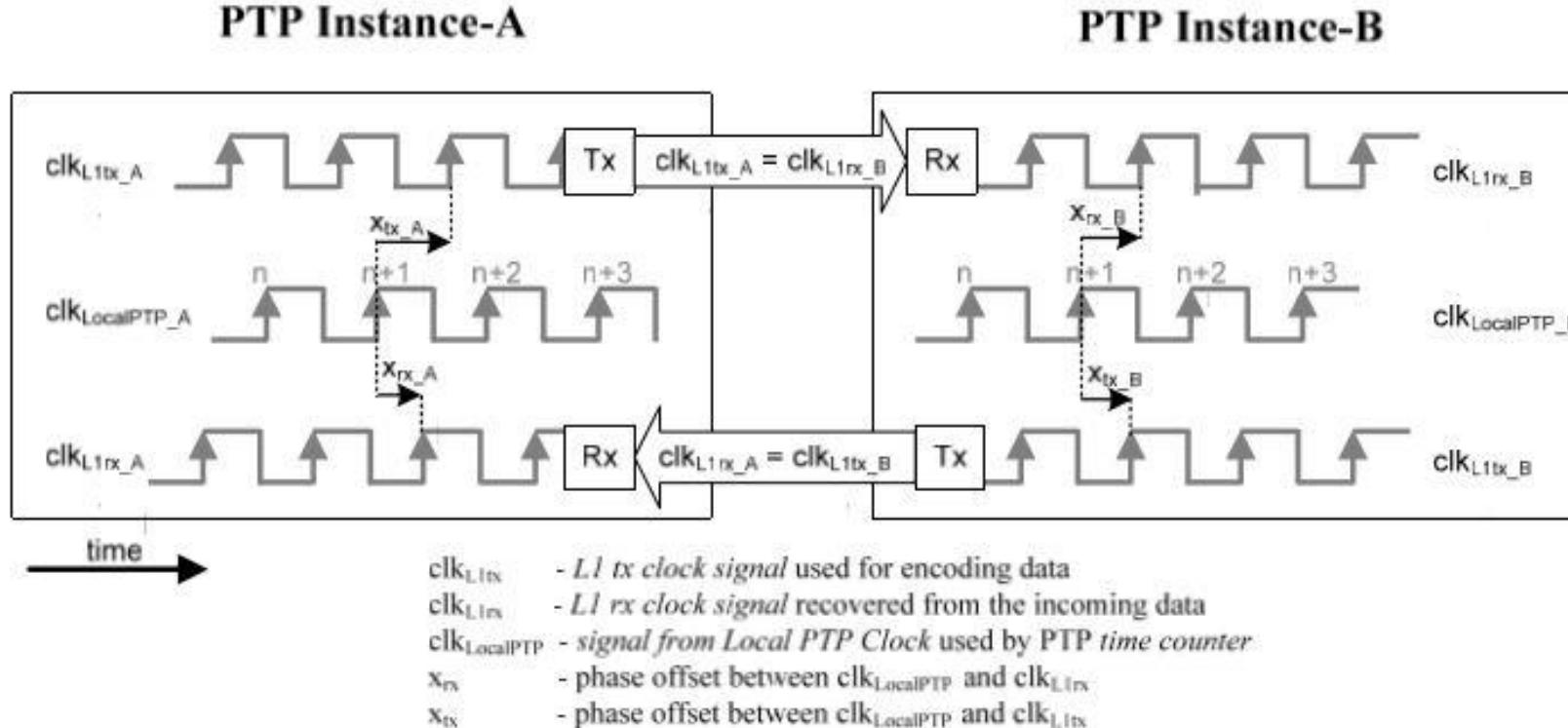
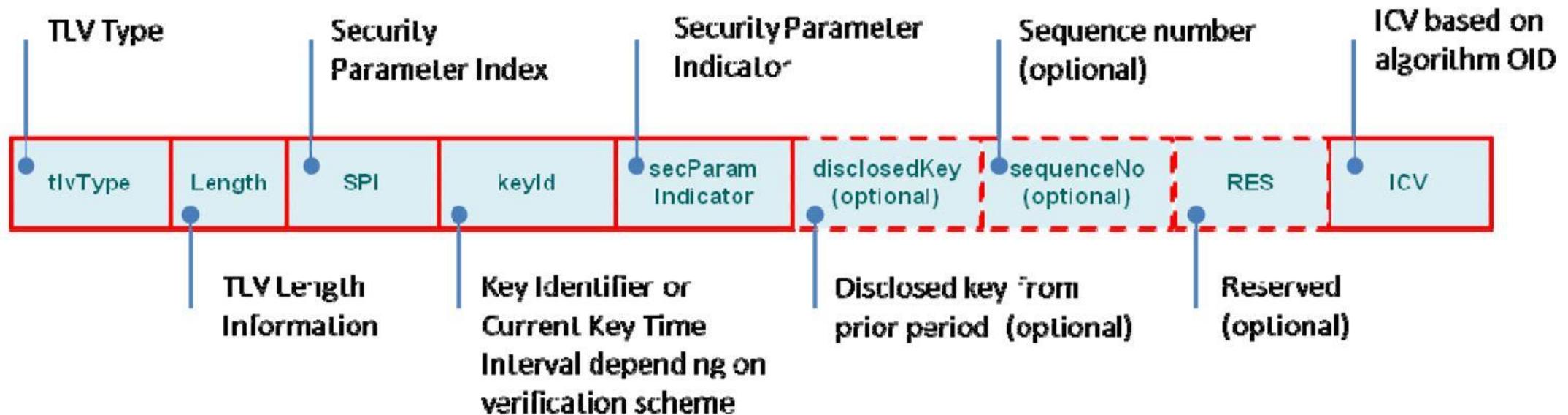


Figure 65—Link reference model.


Asymmetry errors removed through calibration of phase differences among various clocks

- Calibration is relative to “Golden Calibrator”
- Scaling to large networks unsolved problem
- Layer-1 Syntonization keeps phase errors quasi-static so they can be calibrated

Four Prongs

1. Recommendations for transport of PTP over IPsec and MACsec
2. Security TLV
 - Can be attached to any PTP message
 - Friendly to GDOI and TESLA based key exchange mechanisms
 - Key exchange details outside scope of IEEE 1588
3. Recommendations for use of redundancy in network architecture
 - For example, multi-master PTP, multipath PTP
 - Necessary but not sufficient to defeat delay attacks
4. Recommendations on the use of monitoring

Security TLV

Performance Metrics for Monitoring

- Complete implementation
 - 24 hour average of each metric
 - 24 hours worth of 15 minute averages of each metric
 - 37 metrics defined
 - Partial or no implementation allowed
- Based on fundamental statistics for each quantity
 - Average, minimum, maximum, standard deviation
 - Or counters
- Examples
 - averageOffsetFromMaster
 - minMeanPathDelay (delay request-response only)
 - maxMeanLinkDelay (peer delay only)
 - SyncRx (counter)

Even more optional features

- Slave timing measurement TLV for monitoring
 - Pass timestamps to GM or monitoring node to verify timing
- Special ports
 - Interfacing PTP with transport mechanism which has built in timing
 - WiFi
 - EPON
- Mixed multicast/unicast operation
 - Sync, Announce are multicast
 - Delay Request, Delay Response are unicast
 - Cut down on “noise” in multicast address
- Not addressed in this edition: standards MIB, YANG

Summary

- Backward compatibility maintained
 - PTPv2 and PTPv2.1 devices can work together
- Features for robustness and accuracy
 - Profile Isolation
 - Interdomain interactions
 - Security TLV
 - Standard metrics
 - Slave port monitoring
- Features for Accuracy
 - Manual port configuration
 - Calibration
 - Layer-1 syntonization
- Features for flexibility
 - Modular TCs
 - Special ports
 - Mixed multicast/unicast

Accurate time. Worldwide.

Thank you for your attention

Doug Arnold

Meinberg USA

Doug.Arnold@meinberg-usa.com