
WSTS 2016
Virtualization of Time in Compute Systems

Kevin B. Stanton, Ph.D.
Sr. Principal Engineer
Intel Corporation

Time
WSTS 2016 Kevin Stanton2

Abstract

Time is anchored firmly in the physical world. Users of

computing machines yearn for ever-increasing heights in

abstraction. But Compute Virtualization need not be the

enemy of time that scales both in accuracy and robustness

of availability per application requirements. In this talk we

provide an overview of the relevant virtualization models,

describe current support for gaining immediate access to

precision time in such systems, enumerate gaps, and

propose an approach for addressing them.

Time
WSTS 2016 Kevin Stanton3

Need for Precision Timekeeping is Growing

Automotive Conferencing Realtime A/V Industrial/
Energy

Cellular/Telco Financial Cloud/HPC

Some Apps Require UTC Traceability
…Some Do Not

Time
WSTS 2016 Kevin Stanton

The “Last Inch” Challenge

Reference Time

The Last Inch

Large

Distance

Software

Application

The term “The Last Inch” comes from Timing in cyber-physical systems: The last inch problem
by John Eidson et al, ISPCS 2015 http://dx.doi.org/10.1109/ISPCS.2015.7324674

4

http://dx.doi.org/10.1109/ISPCS.2015.7324674

Time
WSTS 2016 Kevin Stanton

Application Software is Separated from Network Time
by a Large Chasm

5

For software, NOW is never really “Now”

It’s always “Recently”

Time
WSTS 2016 Kevin Stanton

Modern Computer System

LANLANGNSS

LAN

Hypervisor

App
1

App
2

App
3

App
4

Wi-Fi

GNSS
Constellation

WLAN

Operating
System

Operating
System

Network
Clock
Sources

CPU

6

Multiple Time Sources are Required

Virtual Machine (VM)
Virtual Machine (VM)

Time
WSTS 2016 Kevin Stanton

Scalable Timebase Representation

Here’s what’s needed:

1. A Stable HW Reference

2. Fast * and + Ops

3. Precise estimate of m and c

 Any Timebase to/from Any
Timebase

m

c

*
+

PTP
GM #0

External

Timebases

CPU Time

Reference

(e.g., TSC)

m

c

*
+

PTP
GM #2

m

c

÷

-
GPS

.

7

Linear transformation between CPU time

and other arbitrary time via y=mx+c

Each VM

Virtualization Need Not Degrade Time

Time
WSTS 2016 Kevin Stanton

Software access to “Now”

8

clock_gettime(CLOCK_MONOTONIC_RAW, &now);

- Returns current TSC value scaled to nominal nanoseconds

clock_gettime(CLOCK_MONOTONIC, &now);

- Returns current TSC value scaled to track TAI, in nanoseconds

clock_gettime(CLOCK_REALTIME, &now);

- Returns CLOCK_MONOTONIC + (now-1/1/1970) + leap seconds

m

c

*
+

TSC

POSIX: Piecewise-Linear Clock Model:
Y[n]=mx[n]+c

Time
WSTS 2016 Kevin Stanton

System Time_1Cross Timestamps,

Captured Simultaneously

Measuring PTP vs. System Time using PCIe PTM
(Precision Time Measurement)

Scenario:

1. Device Driver Triggers Cross-Timestamp

2. Device initiates PTM Request TLP to Root Complex

3. System Time is Returned (delays are compensated)

4. (PTM Time, PTP Time) returned to Device Driver

5. Software “disciplines” two variables per clock: m and c
PCIe Root Complex

Switch

Computer

System

Other I/O
Device

LAN

System

Time

Delays Over PCIe

Links and

through

Switches

compensatedPTP Network Time

LAN

In-System Cross Timestamps  Time Translation Coefficients

System Time_2

Other I/O DeviceTime

9

Time
WSTS 2016 Kevin Stanton10

PTP Interface Virtualization

NIC

VM

Hypervisor

VM

D
ri

v
e

r

PTP

T
S

NIC

OS
D

ri
v

e
r

PTP

T
S

NOT Virtualized NIC Directly Assigned

…

#0 #1

Time
WSTS 2016 Kevin Stanton11

PTP Interface Virtualization

NIC

VM

D
ri

v
e

r

PTP

T
S

Coefficients

Hypervisor Terminates PTP
Propagates Coefficients Only

VM
H

y
p

e
rv

is
o

r

NIC

VM

T
S

Hypervisor Terminates PTP
Emulates TC in VSwitch

VM

H
y

p
e

rv
is

o
r

PTP PTP

VSwitch
PTP
TC

…
…

#3#2

Time
WSTS 2016 Kevin Stanton12

PTP Interface Virtualization

NIC

VM

Other Models?

VM

Hypervisor

NIC

H
y

p
e

rv
is

o
r

VM VM

D
ri

v
e

r

PTP

T
S

IO Virtualization (SR-IOV)

D
ri

v
e

r
PTP
T

S

SR-
IOV

SR-
IOV

…

…

…

?

#4 ?

?

Time
WSTS 2016 Kevin Stanton13

VM Access to PTP Event Message Timestamps

Three models:

1. Ethernet Hardware is owned by one VM instance

2. VMM runs PTP (interacts with PTP hardware directly), provides logical
interface or coefficients to VMs

3. VSwitch implements PTP Transparent Clock, defines constant arbitrary
residence time (e.g., 1ns)

4. VMs individually run PTP, interact with Ethernet hardware (e.g., via SR-IOV)

Time
WSTS 2016 Kevin Stanton14

Disciplining/Adjusting the PTP Timestamp Counter

Approaches:

1. Leave the PTP Counter be—let it free run

 Improves stability, scales to an infinite # of VMs, scales to infinite # of GMs and PTP
Domains

2. Ethernet PTP Hardware Clock (PHC) owned by one Guest/VM instance

 Implementable today

3. VMM Disciplines separate PHC clocks on behalf of guests

 Let’s not do this

4. Hypervisor virtualizes the adjustment requests by managing mx+c coefficients,
and resulting PTP timestamp values

5. VMs individually interact with PTP Hardware Clocks (e.g., via SR-IOV)

 Requires hardware replication—limited # of PHCs

Why Does PTP Timestamp Counter Need To
Contain UTC (if Coefficients are Known)?

Time
WSTS 2016 Kevin Stanton15

Summary

1. Virtualization *need not* degrade timing

2. Coefficients: The best way to map system time (TSC) to universal time

3. Virtualization of timestamping hardware: Multiple options, with pros/cons

 If you’re interested, please join the dialogue

4. The need to virtualize control of PTP counter is limited to a few situations

