DOUBLETREE BY HILTON
N Ji

Workshop on Synchronization :
and June 13- 16,2016

Timing Systems

intel/ Look nsige

WSTS 2016
Virtualization of Time in Compute Systems

Kevin B. Stanton, Ph.D.
Sr. Principal Engineer
Intel Corporation

Time is anchored firmly in the physical world. Users of
computing machines yearn for ever-increasing heights in
abstraction. But Compute Virtualization need not be the
enemy of time that scales both in accuracy and robustness
of availability per application requirements. In this talk we
provide an overview of the relevant virtualization models,
describe current support for gaining immediate access to
precision time in such systems, enumerate gaps, and
propose an approach for addressing them.

@ ITime

WSTS 2016 Kevin Stanton

Need for Precision Timekeeping is Growing
B [R

Automotive Conferencing Realtime A/V Industrial/
Energy

Cellular/Telco ‘Finalal Cloud/HPC

Some Apps Require UTC Traceability
...Some Do Not

WSTS 2016 Kevin Stanton

The “Last Inch” Challenge

Reference Time

Large
Distance

Software
Application

The Last Inch

The term “The Last Inch” comes from Timing in cyber-physical systems: The last inch problem
by John Eidson et al, ISPCS 2015 http://dx.doi.org/10.1109/ISPCS.2015.7324674

WSTS 2016 Kevin Stanton

http://dx.doi.org/10.1109/ISPCS.2015.7324674

Application Software is Separated from Network Time
by a Large Chasm

Now

For software, NOW is never really “Now”
It’'s always “Recently”

@ ITime

WSTS 2016 Kevin Stanton

Modern Computer System

Virtual Machine (VM) Virtual Machine (VM)
irtual Machine

App Al SAPP
2 3 4

Operating Operating
System System

GNSS LAN Network

Constellatio
© <+«— (Clock
& e Sources

[Multiple Time Sources are Required]

@ | Time

WSTS 2016 Kevin Stanton

Scalable Timebase Representation

Each VM

-

CPU Time
Reference
(e.g., TSC)

/

PTP

GM #0

PTP

GM #2

GPS

m

C

~/

>

A

N\

External
Timebases

/

Linear transformation between CPU time

and other arbitrary time via y=mx+c
Here's what's needed:

1. A Stable HW Reference

2. Fast*and + Ops

3. Precise estimate of mand ¢

=> Any Timebase to/from Any
Timebase

ol
CEJC

{ Virtualization Need Not Degrade Time J

©

WSTS 2016

Kevin Stanton

@ ITime

Software access to “Now”

rsc ﬁ

clock gettime (CLOCK MONOTONIC RAW, &now); m
- Returns current TSC value scaled to nominal nanoseconds C + >
clock gettime (CLOCK MONOTONIC, &Now) ;

- Returns current TSC value scaled to track TAl, in nanoseconds

clock gettime (CLOCK REALTIME, &Now) ;
- Returns CLOCK_MONOTONIC + (now-1/1/1970) + leap seconds

POSIX: Piecewise-Linear Clock Model:
Y[n]=mx[n]+c

@ ITime

WSTS 2016 Kevin Stanton

Measuring PTP vs. System Time using PCle PTM

(Precision Time Measurement)
Scenario:

1. Device Driver Triggers Cross-Timestamp

2. Deviceinitiates PTM Request TLP to Root Complex Computer
3. System Time is Returned (delays are compensated) System
4. (PTM Time, PTP Time) returned to Device Driver ?erteem

5. Software “disciplines” two variables per clock: m and ¢

Pfle Raot Complex

Delays Over PCle
: Links and
Cross Timestamps, | System Time_1 | Swut\c\h — through
: ‘ Switches
Captured Simultaneously | ————— Time| / | compensated
DR |
t2 t3 t2' t3' t2° 3" \'\. é‘
\ J L4 \ J A \ J LAN Other I/O
e 2UPTM A= \ FPTM \ | Device
’ -, dalog” pTI - dEleg.” PTM ™, .
Reﬂs&. / ResponseD: ’ ResponseD:, I System Time_2 |
: : (t2', t3 —t2) : : (t2", t3' —t2'}':E
PTM > Request “Request “Request
AR - // e - // et -
X 77 s A 3 3
t1 t4 t1" t4' t1 t4

WSTS 2016 Kevin Stanton

PTP Interface Virtualization

NOT Virtualized NIC Directly Assigned

o B

)

NIC

H(4 1
mr J LA -

WSTS 2016 Kevin Stanton

@ ITime

PTP Interface Virtualization

Hypervisor Terminates PTP Hypervisor Terminates PTP
Propagates Coefficients Only Emulates TC in VSwitch

VSwitch
“PTP
TC

Hypervisor
Hypervisor

@ ITime

WSTS 2016 Kevin Stanton

PTP Interface Virtualization
IO Virtualization (SR-IOV) Other Models?

‘B8

7
ol
B
Py

Hypervisor

SR-) [SR-
[IOV] [IOV]
(9 NIC

Y.
T v

@ ITime

WSTS 2016 Kevin Stanton

VM Access to PTP Event Message Timestamps

Three models:

1. Ethernet Hardware is owned by one VM instance

2. VMM runs PTP (interacts with PTP hardware directly), provides logical
interface or coefficients to VMs

3. VSwitch implements PTP Transparent Clock, defines constant arbitrary
residence time (e.g., 1ns)

4. VMs individually run PTP, interact with Ethernet hardware (e.g., via SR-I0V)

@ | Time

WSTS 2016 Kevin Stanton

Disciplining/Adjusting the PTP Timestamp Counter

Approaches:

1. Leave the PTP Counter be—let it free run

= Improves stability, scales to an infinite # of VMs, scales to infinite # of GMs and PTP
Domains

2. Ethernet PTP Hardware Clock (PHC) owned by one Guest/VM instance

= Implementable today

3. VMM Disciplines separate PHC clocks on behalf of guests

= |Let's not do this

4. Hypervisor virtualizes the adjustment requests by managing mx+c coefficients,
and resulting PTP timestamp values

5. VMs individually interact with PTP Hardware Clocks (e.g., via SR-10V)

= Requires hardware replication—limited # of PHCs

{ Why Does PTP Timestamp Counter Need To]

Contain UTC (if Coefficients are Known)?

@ ITime

WSTS 2016 Kevin Stanton

Summary

1. Virtualization *need not* degrade timing

2. Coefficients: The best way to map system time (TSC) to universal time

3. Virtualization of timestamping hardware: Multiple options, with pros/cons
= |fyou're interested, please join the dialogue

4. The need to virtualize control of PTP counter is limited to a few situations

@ | Time

WSTS 2016 Kevin Stanton

