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Abstract

Time is anchored firmly in the physical world. Users of 

computing machines yearn for ever-increasing heights in 

abstraction. But Compute Virtualization need not be the 

enemy of time that scales both in accuracy and robustness 

of availability per application requirements. In this talk we 

provide an overview of the relevant virtualization models, 

describe current support for gaining immediate access to 

precision time in such systems, enumerate gaps, and 

propose an approach for addressing them.  
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Need for Precision Timekeeping  is Growing

Automotive Conferencing Realtime A/V Industrial/
Energy

Cellular/Telco Financial Cloud/HPC

Some Apps Require UTC Traceability
…Some Do Not
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The “Last Inch” Challenge
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The term “The Last Inch” comes from Timing in cyber-physical systems: The last inch problem
by John Eidson et al, ISPCS 2015 http://dx.doi.org/10.1109/ISPCS.2015.7324674
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http://dx.doi.org/10.1109/ISPCS.2015.7324674
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Application Software is Separated from Network Time 
by a Large Chasm
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For software, NOW is never really “Now”

It’s always “Recently”
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Modern Computer System
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Multiple Time Sources are Required

Virtual Machine (VM)
Virtual Machine (VM)
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Scalable Timebase Representation

Here’s what’s needed:
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Linear transformation between CPU time

and other arbitrary time via y=mx+c

Each VM

Virtualization Need Not Degrade Time
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Software access to “Now”
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clock_gettime(CLOCK_MONOTONIC_RAW, &now);

- Returns current TSC value scaled to nominal nanoseconds

clock_gettime(CLOCK_MONOTONIC,     &now);

- Returns current TSC value scaled to track TAI, in nanoseconds

clock_gettime(CLOCK_REALTIME,      &now);

- Returns CLOCK_MONOTONIC + (now-1/1/1970) + leap seconds

m

c

*
+

TSC

POSIX: Piecewise-Linear Clock Model: 
Y[n]=mx[n]+c
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System Time_1Cross Timestamps,

Captured Simultaneously

Measuring PTP vs. System Time using PCIe PTM
(Precision Time Measurement)

Scenario:

1. Device Driver Triggers Cross-Timestamp

2. Device initiates PTM Request TLP to Root Complex

3. System Time is Returned (delays are compensated )

4. (PTM Time, PTP Time) returned to Device Driver

5. Software “disciplines” two variables per clock:  m and c
PCIe Root Complex
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PTP Interface Virtualization
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PTP Interface Virtualization
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PTP Interface Virtualization
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VM Access to PTP Event Message Timestamps

Three models:

1. Ethernet Hardware is owned by one VM instance

2. VMM runs PTP (interacts with PTP hardware directly), provides logical 
interface or coefficients to VMs

3. VSwitch implements PTP Transparent Clock, defines constant arbitrary 
residence time (e.g., 1ns)

4. VMs individually run PTP, interact with Ethernet hardware (e.g., via SR-IOV)
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Disciplining/Adjusting the PTP Timestamp Counter

Approaches:

1. Leave the PTP Counter be—let it free run

 Improves stability, scales to an infinite # of VMs, scales to infinite # of GMs and PTP 
Domains

2. Ethernet PTP Hardware Clock (PHC) owned by one Guest/VM instance

 Implementable today

3. VMM Disciplines separate PHC clocks on behalf of guests

 Let’s not do this

4. Hypervisor virtualizes the adjustment requests by managing mx+c coefficients, 
and resulting PTP timestamp values

5. VMs individually interact with PTP Hardware Clocks (e.g., via SR-IOV)

 Requires hardware replication—limited # of PHCs

Why Does PTP Timestamp Counter Need To 
Contain UTC (if Coefficients are Known)?
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Summary

1. Virtualization *need not* degrade timing

2. Coefficients: The best way to map system time (TSC) to universal time

3. Virtualization of timestamping hardware: Multiple options, with pros/cons

 If you’re interested, please join the dialogue

4. The need to virtualize control of PTP counter is limited to a few situations


